Skip to main content

AWS Commands

install:
pip install awscli

setup:
aws configure

sts-identity:
aws sts get-caller-identity

secret_manager_get_values:
aws secretsmanager get-secret-value --secret-id wysde --query SecretString --output text

s3_create_bucket:
TS=$(date +%s)
aws s3api create-bucket --bucket <bucket-name>-$TS --region us-east-1

create_policy:
aws iam create-policy --policy-name <policy-name> --policy-document file://<file-name>.json

create_role:
aws iam create-role --role-name <role-name> --assume-role-policy-document file://role-trust.json

attach_policy_to_role:
aws iam attach-role-policy --policy-arn <> --role-name <>

iam_keys_rotation:
aws iam list-users
aws iam list-access-keys --user-name jan31
aws iam create-access-key --user-name jan31
aws iam update-access-key --access-key-id <> --status Inactive --user-name jan31
aws iam delete-access-key --access-key-id <> --user-name jan31

create-redshift-cluster:
# Use the following command to create a two-node dc2.large cluster with the minimal set of parameters of cluster-identifier (any unique identifier for the cluster), node-type/number-of-nodes and the master user credentials. Replace $MasterUserPassword in the following command with a password of your choice. The password must be 8-64 characters long and must contain at least one uppercase letter, one lowercase letter, and one number. You can use any printable ASCII character except /, "", or, or @:
aws redshift create-cluster --node-type dc2.large --number-of-nodes 2 --master-username adminuser --master-user-password $MasterUserPassword --cluster-identifier myredshiftcluster
# It will take a few minutes to create the cluster. You can monitor the status of the cluster creation process using the following command:
aws redshift describe-clusters --cluster-identifier myredshiftcluster
# Note that "ClusterStatus": "available" indicates that the cluster is ready for use and that you can connect to it using the "Address": "myredshiftcluster.abcdefghijk.eu-west-1.redshift.amazonaws.com" endpoint. The cluster is now ready. Now, you use an ODBC/JDBC to connect to the Amazon Redshift cluster.

ec2_port_routing:
sudo iptables -t nat -L
sudo iptables -t nat -A PREROUTING -p tcp --dport 80 -j REDIRECT --to-ports 8080
sudo iptables -t nat -A PREROUTING -p tcp --dport 443 -j REDIRECT --to-ports 8080
sudo iptables -t nat -D PREROUTING 1 # to remove
iptables -P INPUT ACCEPT
iptables -P OUTPUT ACCEPT
iptables -P FORWARD ACCEPT
iptables -F

get_ssl_cert:
sudo snap install core; sudo snap refresh core
sudo apt-get remove certbot
sudo snap install --classic certbot
sudo ln -s /snap/bin/certbot /usr/bin/certbot
sudo certbot certonly --standalone

ec2_login_ssh:
chmod 400 sparsh.pem
sudo chown -R ubuntu /home/ubuntu
ssh -i "sparsh.pem" ubuntu@ec2-111-11-11-111.compute-1.amazonaws.com

secretsmanager_python:
#!/usr/bin/python
import boto3
import json
def get_secret(secret_name, region_name="us-east-1"):
session = boto3.session.Session()
client = session.client(
service_name='secretsmanager',
region_name=region_name)
get_secret_value_response = client.get_secret_value(SecretId=secret_name)
get_secret_value_response = json.loads(get_secret_value_response['SecretString'])
return get_secret_value_response

secretsmanager_python_postgres:
import pandas as pd
import psycopg2
import boto3
import json
from sqlalchemy import create_engine
from sqlalchemy import text

def get_secret(secret_name='wysde'):
region_name = "us-east-1"
session = boto3.session.Session()
client = session.client(
service_name='secretsmanager',
region_name=region_name)
get_secret_value_response = client.get_secret_value(SecretId=secret_name)
get_secret_value_response = json.loads(get_secret_value_response['SecretString'])
return get_secret_value_response

secret_vals = get_secret()

postgres_endpoint = secret_vals['RDS_POSTGRES_HOST']
postgres_user = secret_vals['RDS_POSTGRES_USERNAME']
postgres_pass = secret_vals['RDS_POSTGRES_PASSWORD']
port = secret_vals['RDS_POSTGRES_PORT']
dbname = "postgres"

engine_string = "postgresql+psycopg2://%s:%s@%s:%s/%s" \
% (postgres_user, postgres_pass, postgres_endpoint, port, dbname)
engine = create_engine(engine_string)

query = """
SELECT *
FROM pg_catalog.pg_tables
WHERE schemaname != 'pg_catalog' AND
schemaname != 'information_schema';
"""
df = pd.read_sql_query(text(query), engine)